SHORT

Unusual Fragmentation of the Enedione Precursor of Thromboxans under Conditions of Hydride Reduction*

R. R. Akhmetvaleev, R. V. Bikbulatov, T. A. Belogaeva, F. A. Akbutina, and M. S. Miftakhov
Institute of Organic Chemistry, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, 450054 Bashkortostan, Russia
fax: (3472) 356066

Received February 7, 2001

While accompishing the total synthesis of 9-LOthromboxan $\mathrm{B}_{2}\left(9-\mathrm{LO}-\mathrm{TxB}_{2}\right)[1,2]$ from levoglucosan, at the stage of reduction of enedione \mathbf{I} with L-Selectride we isolated diol III instead of the expected ester $9-\mathrm{LO}-\mathrm{TxB}_{2}$ (II). The reduction under milder conditions [with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$] also gave compound III (Scheme 1). In both cases we detected no fragmentation products of \mathbf{I}, containing the missing "upper"
alkene chain and pyran ring. Presumably, these fragments are rapidly involved in further transformations, e.g., oligomerization which is favored by their dicarbonyl nature. The observed fragmentation of I under conditions of hydride reduction deserves attention primarily from the viewpoint of its mechanism. Enedione I was synthesized from the known levoglucosan derivative IV [3] (Scheme 1).

Scheme 1.

[^0](+)-6 α-Methoxy-2 $\beta-[(1 E)$-6-methoxycarbonyl-3-oxo-1-hexenyl]-3 α-[(2Z)-2-octenyl]pyran-3-on (I). Oily substance, $[\alpha]_{\mathrm{D}}^{20}=+6.5^{\circ}\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.88 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=6.9 \mathrm{~Hz}\right)$, $1.20-1.40 \mathrm{~m}(6 \mathrm{H}), 1.90-2.00 \mathrm{~m}(4 \mathrm{H}), 2.40 \mathrm{~m}(4 \mathrm{H})$, $2.70(5 \mathrm{H}), 3.33 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.40 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, 2-\mathrm{H}, J=6.0,9.7 \mathrm{~Hz}), 5.15 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}$, $J=4.0 \mathrm{~Hz}), 5.25-5.50 \mathrm{~m}(2 \mathrm{H}$, cis $-\mathrm{CH}=\mathrm{CH}), 6.40 \mathrm{~d}$ $(1 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}, J=15.8 \mathrm{~Hz})$ and 6.85 d.d (1 H , trans $-\mathrm{CH}=\mathrm{CH}, J=6.0,15.8 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $14.50\left(\mathrm{CH}_{3}\right)$; 19.91, 22.84, 23.03, 27.90, 29.60, 32.02, 33.52, 40.02, $47.07\left(\mathrm{CH}_{2}\right) ; 52.02$ $\left(\mathrm{C}^{3}\right) ; 55.18(\mathrm{OMe}) ; 55.56(\mathrm{OMe}) ; 72.25\left(\mathrm{C}^{2}\right) ; 100.40$ $\left(\mathrm{C}^{6}\right) ; 126.32,130.84,132.51,142.48(2 \mathrm{CH}=\mathrm{CH})$; $173.90\left(\mathrm{CO}_{2}\right) ; 199.43,204.12$ (CO).
(\pm)-6-Octene-1,5-diol (III). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.20-1.60 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $6.7 \mathrm{~Hz}), 2.20$ br.s $(2 \mathrm{H}, \mathrm{OH}), 3.60 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, J=\right.$
$6.2 \mathrm{~Hz}), 4.05 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO}), 5.45$ d.d $(1 \mathrm{H}, 7-\mathrm{H}, J=$ $15.2,6.1 \mathrm{~Hz}), 5.63 \mathrm{~m}(1 \mathrm{H}, 6-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $17.67\left(\mathrm{CH}_{3}\right), 21.54\left(\mathrm{C}^{3}\right), 32.34\left(\mathrm{C}^{2}\right), 36.68$ $\left(\mathrm{C}^{4}\right), 62.50\left(\mathrm{C}^{1}\right), 72.92\left(\mathrm{C}^{5}\right), 126.85\left(\mathrm{C}^{7}\right), 132.07\left(\mathrm{C}^{6}\right)$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM-300 spectrometer in CDCl_{3}.

REFERENCES

1. Tolstikov, G.A., Miftakhov, M.S., Akhmetvaleev, R.R., Vasil'eva, E.V., Khalilov, L.M., and Zhurba, V.M., Zh. Org. Khim., 1991, vol. 27, no. 11, pp. 2318-2326.
2. Miftakhov, M.S., Imaeva, L.R., Fatykhov, A.A., and Akhmetvaleev, R.R., Russ. J. Org. Chem., 1997, vol. 33, no. 1, pp. 47-54.
3. Kelly, A.G. and Roberts, J.S., J. Chem. Soc., Chem. Commun., 1980, pp. 228-229.

[^0]: * This study was financially supported by the Russian Foundation for Basic Research (project no. 99-03-32916a).

